
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP/2017-035
2017/03/21

CMS-B2G-16-013

Search for a heavy resonance decaying to a top quark and a
vector-like top quark at

√
s = 13 TeV

The CMS Collaboration∗

Abstract

A search is presented for massive spin-1 Z′ resonances decaying to a top quark and
a heavy vector-like top quark partner T. The search is based on a 2.6 fb−1 sample of
proton-proton collisions at 13 TeV collected with the CMS detector at the LHC. The
analysis is optimized for final states in which the T quark decays to a W boson and a
bottom quark. The focus is on all-jet final states in which both the W boson and the top
quark decay into quarks that evolve into jets. The decay products of the top quark and
of the W boson are assumed to be highly Lorentz-boosted and cannot be reconstructed
as separate jets, but are instead reconstructed as merged, wide jets. Techniques for the
identification of jet substructure and jet flavour are used to distinguish signal from
background events. Several models for Z′ bosons decaying to T quarks are excluded
at 95% confidence level, with upper limits on the cross section ranging from 0.13 to
10 pb, depending on the chosen hypotheses. This is the first search for a neutral spin-1
heavy resonance decaying to a top quark and a vector-like T quark in the all-hadronic
final state.

Submitted to the Journal of High Energy Physics

c© 2017 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

70
3.

06
35

2v
1 

 [
he

p-
ex

] 
 1

8 
M

ar
 2

01
7

FERMILAB-PUB-17-104-CMS

http://creativecommons.org/licenses/by/3.0




1

1 Introduction
Many theoretical models of physics beyond the standard model (SM) predict the existence of
heavy bosonic resonances [1–9]. Such resonances include Z′ gauge bosons [10–12] and Kaluza–
Klein excitations of a gluon in Randall–Sundrum models [13, 14]. In many cases the couplings
of these resonances to third-generation SM quarks are enhanced, leading to decay channels
containing top quarks.

The CMS and ATLAS Collaborations at the CERN LHC have performed several searches for
heavy resonances decaying to top quark-antiquark pairs (tt) [15–21], placing very stringent
limits on their production cross sections. However, in models with a heavy gluon [22, 23],
a composite Higgs boson [24], or extra spatial dimensions [22, 25], an additional fermionic
sector may be present in the form of a nonchiral (or vector-like) fourth generation of quarks.
Topologies in which the Z′ boson decays into vector-like quarks have not yet been investigated
experimentally. This search focuses on the kinematic range in which Z′ boson decays to tT
dominate over those to TT, where T is a vector-like heavy quark with a charge of two thirds.

Vector-like quarks are fermions whose left- and right-handed components transform in the
same way under the electroweak symmetry group of the SM. Consequently, their masses can be
generated through direct mass terms in the Lagrangian, rather than via Yukawa couplings. This
feature makes theories that include a heavy vector-like quark sector compatible with current
Higgs boson measurements [26].

We present results of the first search for neutral spin-1 heavy resonances decaying to a top
quark and a vector-like T quark, in all-jet final states. The search is optimized for the T → bW
decay mode, but also considers T → tH and T → TZ decays. The analysis is based on data
from proton-proton collisions collected by the CMS experiment at a centre-of-mass energy of
13 TeV, corresponding to a total integrated luminosity of 2.6 fb−1.

The results of the analysis are compared with the predictions of two theoretical models. The
first model [22] is an effective theory with one warped extra dimension that considers only the
lowest-energy spin-1 and spin-1/2 resonances to describe the decays of the lightest Kaluza–
Klein excitation of the gluon, G∗, to one SM particle and one heavy fermion. We consider the
specific case where the G∗ resonance decays to a top quark and a heavy top quark partner T. The
model assumes branching fractions (B) to be 50/25/25% for T quark decay to the bW/tH/tZ
channels. Benchmark values of tan θ3 = 0.44, sin φtR = 0.6, and Y∗ = 3 are used for the model
parameters. The definitions of the parameters, the choice of their values, and their impact on
the cross section are explained in [22].

The second model [24] is a minimal composite effective theory of the Higgs boson based on the
coset SO(5)/SO(4), describing the phenomenology of heavy vector resonances, with particular
focus on their interactions with top quark partners. The results of the analysis are compared
with the cross section for the production of a neutral spin-1 resonance ρ0

L decaying to a top
quark and a heavy top quark partner T. The model assumes T branching fractions to tH/tZ
channels of 50/50%. The following are benchmark values of the model parameters: yL = c3 =
c2 = 1, and gρL = 3. The model parameters and the choice of benchmark values are described
in [24]. This model is used to simulate signal samples.

The G∗ and the ρ0
L resonances are candidates for the Z′ of this search and are both produced

through quark-antiquark pair interactions at the LHC. The kinematic distributions of the decay
modes considered are comparable between the two models. Hypothetical top quark flavour-
changing neutral currents generated in the interaction between the top quark, Z′ boson, and T
quark are estimated to be below the reach of current measurements [27] because of the large
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suppression generated by off-shell effects of the Z′ boson and the T quark. The leading order
Feynman diagram for the production of the Z′ boson and the decay chain under consideration
is depicted in Fig. 1.
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Figure 1: The leading order Feynman diagram showing the production mode of the Z′ boson
and its decay chain.

Because of the large difference in mass between the W boson and the T quark, the W boson
receives a large Lorentz boost, such that its decay products appear as merged jets (in a highly-
boosted topology). Jet substructure algorithms are employed to reconstruct and identify the W
boson originating from the decay of the T quark. If the mass difference between the Z′ boson
and the T quark is much larger than the mass of the top quark, the top quark from the decay
of the Z′ boson also receives a large transverse momentum (pT), in which case jet-substructure
techniques can also be used to identify and reconstruct the all-jets decay of the top quark.

The dominant background is from SM events and is comprised of jets produced through the
strong interaction, i.e. quantum chromodynamics (QCD) multijet events, followed by events
from tt pair production and from single top quark production. The contribution of the latter
processes is estimated from simulation, while the multijet QCD background is estimated from
data using signal-depleted control regions.

This paper is organized as follows: Section 2 gives a description of the CMS detector and the
reconstruction of events. Section 3 describes the data and the simulated samples used in the
analysis. An overview of the jet-substructure algorithms and the details of the selection for
the analysis are given in Section 4. Estimation of SM background processes is discussed in
Section 5, while Section 6 describes the systematic uncertainties. The results of the analysis and
a summary are given in Sections 7 and 8, respectively.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid.

A particle-flow event algorithm [28, 29] reconstructs and identifies each individual particle
with an optimized combination of information from the various elements of the CMS detector.
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The energy of photons is directly obtained from the ECAL measurement, corrected for zero-
suppression effects. The energy of electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined by the tracker, the energy of the
corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially com-
patible with originating from the electron track. The energy of muons is obtained from the
curvature of the corresponding track. The energy of charged hadrons is determined from a
combination of their momentum measured in the tracker and the matching ECAL and HCAL
energy deposits, corrected for zero-suppression effects and for the response function of the
calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the
corresponding corrected sum of ECAL and HCAL energies. Primary vertices are reconstructed
using a deterministic annealing filter algorithm [30]. The vertex with the largest sum of the
squares of the associated track pT values is taken to be the primary event vertex. A more de-
tailed description of the CMS detector, together with a definition of the coordinate system used
and the relevant kinematic variables, can be found in Ref. [31].

3 Data and simulation samples
The events are selected with an online trigger that required the scalar pT sum of the jets (HT)
to be larger than 800 GeV. The offline HT is required to be larger than 850 GeV. After this
selection, the trigger is more than 97% efficient in selecting those events that would pass the
analysis selection. The trigger and offline HT selections do not significantly impact the overall
signal efficiency because the masses of the spin-1 resonances considered in this analysis are at
least 1.5 TeV.

The signal processes are simulated using MADGRAPH v5.2.2.2 [32]. Neutral spin-1 resonances
(Z′ boson) decaying exclusively to a top quark and an up-type heavy vector-like quark (T) are
generated. Data samples are produced for three values of mass of the Z′ boson and a width of
1% the mass. For the T quark samples the width of the quark is fixed to 1 MeV. The values of
the width are chosen to be much smaller than the detector resolution. The T quark is generated
with left-handed chirality. The impact of the chirality of the T quark on the analysis is assessed
on a single signal configuration and is found to be insignificant, and for this reason the right-
handed chirality case is not explicitly considered.

The simulation of the signal event production is based on a simplified low-energy effective
theory describing the phenomenology of heavy vector resonances in the minimal composite
Higgs model [24]. Signal samples are generated for three decay modes of the T quark: T→ bW,
tH, and tZ. Several mass hypotheses for the Z′ (T) resonance are considered ranging from 1.5
to 2.5 (0.7 to 1.5) TeV. The combination of the Z′ and T masses is chosen such that the mass of
the T quark is roughly 1/2, 2/3, or 5/6 of the Z′ boson mass. With this choice of masses, the
Z′ decay into a T quark-antiquark pair is kinematically suppressed. For some of the samples
generated, the top quark from the decay of the Z′ boson receives a small pT and its decay does
not result in a boosted topology.

The decay of heavy resonances in signal events is processed with MADSPIN [33] to correctly
treat the spin correlations in the decay chain. The matrix element calculations for signal pro-
cesses include one extra parton at most emitted at tree level. To model fragmentation and
parton showering, the PYTHIA 8.2 [34] tune CUETP8M1 [35] is used, and the MLM scheme [36]
is used to match parton emission in the matrix element with the parton shower. Differential jet
rates are checked for smoothness to ensure that the matching scale is chosen correctly.

Background top quark pair production is simulated with the next-to-leading-order generator



4 4 Event reconstruction and selection

POWHEG V2 [37–41]. The tt event sample is normalized to the next-to-next-to-leading order
(NNLO) cross section of σtt = 831.76 pb [42]. Background events from single top quark pro-
duction in the tW channel are also generated with POWHEG V2 and are normalized to a cross
section of 71.7 pb [43]. Single top quark production in the s and t channels without an associ-
ated W boson is generated with MADGRAPH v5.2.2.2 [32] and the cross sections are normalized
to 10.32 and 216.99 pb, respectively [44, 45]. All samples are interfaced to PYTHIA 8.2 for frag-
mentation and parton showering. The multijet QCD production is estimated from data. Simu-
lated multijet QCD events are used only to validate the method of background estimation and
are generated with PYTHIA 8.2, binned in HT to increase the event sample in the high-energy
region.

All events were generated with the NNPDF 3.0 parton distribution functions (PDFs) [46]. All
simulated event samples include the simulation of additional inelastic proton-proton interac-
tions within the same or adjacent bunch crossings (pileup). The detector response is simulated
with the GEANT4 package [47, 48]. Simulated events are processed through the same software
chain as used for collision data and are reweighted to match the observed distribution of the
number of pileup interactions in data.

4 Event reconstruction and selection
For each event, hadronic jets are clustered from the reconstructed particles with the infrared
and collinear safe anti-kT algorithm [49], using the FASTJET 3.0 software package [50? ] with
the distance parameters R = 0.4 (AK4 jets) and 0.8 (AK8 jets). The two types of jets are recon-
structed independently. Charged hadrons not associated with the primary vertex of the inter-
action are not considered when clustering. Corrections based on the jet area [51] are applied
to remove the energy contribution of neutral hadrons arising from pileup collisions. Further
corrections are used to account for the nonlinear calorimeter response as a function of η and
pT [52], derived from simulation and from data-to-simulation correction factors. Spurious jets
due to detector noise effects are removed by requiring that neutral particles contribute less than
99% of the electromagnetic and hadronic energy in a jet. Only jets with |η| < 2.4 are considered;
no requirements on lepton or imbalance in transverse momentum are applied.

This analysis considers signal events characterized by a three-jet topology. One of the jets
corresponds to the boosted top quark from the decay of the Z′ boson, the second originates
from the W boson of the T quark decay, and the third is from the b quark emitted in the T
quark decay. These selection criteria are optimized for the decay of the T quark to bW, but the
analysis is sensitive to the other decay modes of the T quark as well. To identify t jets, the jets
associated with top quarks, the “CMS top tagger v2” [53] algorithm is used. In this algorithm,
the constituents of the AK8 jets are reclustered using the Cambridge–Aachen algorithm [54, 55].
The modified mass-drop tagger algorithm [56], also known as the “soft drop” algorithm with
angular exponent β = 0, soft threshold zcut < 0.1, and characteristic radius R0 = 0.8 [57], is
used to remove soft, wide-angle radiation from the jet. This algorithm identifies two subjets
within the AK8 jet corresponding to the b jet and the decay of the W boson. Additionally,
the “N-subjettiness” variables τN [58, 59] are used. These variables, calculated using all the
particle-flow constituents of the AK8 jet, quantify the degree to which a jet can be regarded as
composed of N subjets.

For the identification of top quark candidates, the soft-drop mass, mSD, is required to satisfy
110 < mSD < 210 GeV and the N-subjettiness variable is required to satisfy τ3/τ2 < 0.86. These
selections correspond to a misidentification rate of 10% for multijet QCD, and an efficiency
greater than 70%. To ensure that the decays of the top quark are merged in a single jet, AK8 jets
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are required to have pT > 400 GeV. Jets satisfying the aforementioned momentum, mass, and
N-subjettiness selections are referred to as “t-tagged”.

For the identification of W jets, the same jet reclustering procedure as in the t tagging algorithm
is chosen. Additionally, jets are required to fulfill 70 < mSD < 100 GeV, τ2/τ1 < 0.6, and
pT > 200 GeV. These criteria correspond to a misidentification rate of approximately 5% for
multijet QCD, and an efficiency of approximately 60% for genuine W bosons not coming from
the decay of a top quark. Jets satisfying these requirements are referred to as “W-tagged”.

The Combined Secondary Vertex v2 (CSVv2) algorithm [60, 61] is used to identify AK4 jets
originating from b quarks (b tagging). The ‘medium’ working point of the algorithm is used,
which provides an efficiency of approximately 70% for the identification of genuine b quark jets
while rejecting 99% of light-flavour jets. The ‘loose’ working point of the algorithm is used for
the background estimation, providing an efficiency of approximately 85% and a light-flavour
rejection rate of 90%. Additionally, t-tagged jets with a b-tagged subjet [20, 61] are used to
improve the discrimination power against background processes. The CSVv2 algorithm with
the ‘medium’ working point is used for subjet b tagging.

The events are required to have at least one b-tagged AK4 jet [60], with pT > 100 GeV and
|η| < 2.4. To avoid possible overlaps, the AK4 jet is required to have an angular separation,
∆R, of at least 0.8 with respect to the t-tagged jet and the W-tagged jet. The angular separation
variable ∆R is defined as

√
(∆φ)2 + (∆η)2, where φ is the azimuthal angle. Among the b jets

satisfying these requirements, the one with the highest pT is selected. The T quark candidate
four-momentum is defined as the sum of the 4-vectors of the selected b jet and the W-tagged jet.
Only events with a T quark candidate mass mT > 500 GeV are considered. This selection crite-
rion helps to reject the tt background. The reconstructed Z′ boson candidate four-momentum
is defined as the sum of the 4-vectors of the T quark candidate and the selected t-tagged jet. The
invariant mass of the Z′ boson candidate mZ′ is used as the main discriminating observable in
the analysis.

Events are grouped into two separate categories according to the presence or absence of a b-
tagged subjet in the t-tagged jet. Events containing a b-tagged subjet are placed in the “SR 2 b
tag category” as they contain one b-tagged AK4 jet together with a b-tagged subjet associated
with the t-tagged jet, as opposed to events in the “SR 1 b tag category” that contain only one b-
tagged AK4 jet. No selection criteria are applied to specifically target the tH and tZ final states
of the T quark.

Table 1 shows the selection efficiency for the signal in the different event categories. The sam-
ples with the smallest difference in mass between the Z′ boson and T quark have a degraded
reconstruction efficiency because of the low pT of the top quark originating from the decay of
the Z′ boson. For several mass points the reconstruction efficiency is higher for the T→ tH or
T→ tZ decay channel than for T→ bW, for which the analysis is optimized. This is because if
the T quark decays to a t quark instead of a b quark, there are two t quarks in the final state,
hence it is more likely that at least one of the two t quarks will be tagged. In addition to this,
t quarks coming from the decay of a T quark have a higher pT, therefore are more likely to be
tagged.

5 Background estimation
There are two dominant source of background: multijet QCD production and top quark pro-
duction, including both tt and single top quark contributions. The multijet background contri-
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Table 1: Selection efficiencies for the signal in the categories used in the analysis. The quoted
uncertainties are statistical.

B(T→ bW) = 1
mZ′ [GeV] mT [GeV] Efficiency SR 1 b tag [%] Efficiency SR 2 b tag [%]

1500 700 1.2± 0.2 1.9± 0.3
1500 900 0.74± 0.17 1.1± 0.2
1500 1200 0.23± 0.09 0.21± 0.09
2000 900 2.6± 0.3 3.6± 0.4
2000 1200 2.1± 0.3 3.0± 0.4
2000 1500 0.89± 0.18 0.87± 0.18
2500 1200 3.3± 0.4 3.9± 0.4
2500 1500 2.8± 0.3 3.6± 0.4

B(T→ tH) = 1
mZ′ [GeV] mT [GeV] Efficiency SR 1 b tag [%] Efficiency SR 2 b tag [%]

1500 700 0.55± 0.15 0.75± 0.17
1500 900 0.65± 0.16 0.93± 0.19
1500 1200 0.26± 0.10 0.37± 0.12
2000 900 1.8± 0.3 2.6± 0.3
2000 1200 2.0± 0.3 2.9± 0.3
2000 1500 1.7± 0.3 2.2± 0.3
2500 1200 2.9± 0.3 3.9± 0.4
2500 1500 3.0± 0.3 4.1± 0.4

B(T→ tZ) = 1
mZ′ [GeV] mT [GeV] Efficiency SR 1 b tag [%] Efficiency SR 2 b tag [%]

1500 700 0.62± 0.15 0.84± 0.18
1500 900 0.78± 0.17 0.98± 0.19
1500 1200 0.50± 0.14 0.54± 0.14
2000 900 2.4± 0.3 3.1± 0.4
2000 1200 2.8± 0.3 3.9± 0.4
2000 1500 2.3± 0.3 2.8± 0.3
2500 1200 4.3± 0.4 5.4± 0.5
2500 1500 4.5± 0.4 6.0± 0.5
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bution is the most important for this search. Approximately 20% of the top quark production
in the signal region is composed of single top quark events, mostly in the tW channel. Pair pro-
duction of top quarks in association with a vector boson is not a relevant background for this
analysis because of the non-boosted nature of the process and its relatively small cross section.
Its contribution is estimated to be less than 0.3% of the total number of events in the signal
region.

The multijet background is derived from data with the following procedure. Sideband regions
are defined by inverting the b tagging requirement on the AK4 jet for the selection of the signal.
Specifically, the AK4 jet has to fail the b tagging requirement, using a ‘loose’ operating point
of the b tagging algorithm. Events with additional b-tagged jets are vetoed to ensure indepen-
dence with respect to the signal region. Two different sideband regions are used for the two
signal categories according to the presence or absence of a b-tagged subjet in the t-tagged jet.
A summary of the selection criteria is shown in Table 2.

The shape of the mZ′ distribution is compared between the sideband region and the signal
region in a sample of simulated multijet QCD events. Figure 2 shows the bin-by-bin ratio
of the signal region to the sideband region. Both histograms are normalized to unity before
computing the ratio.

Table 2: Summary of the selection criteria for the event categories in the signal region (SR) and
the sideband region (SB).

Selection SR 1 b tag SB for 1 b tag SR 2 b tag SB for 2 b tag
1 t tag and 1 W tag Yes Yes Yes Yes
Subjet b tag on t-tagged jet Veto Veto Yes Yes
1 AK4 jet, pT > 100 GeV,

Yes Yes Yes Yes
∆R(t− /W− jet, jet) > 0.8
b tag on AK4 jet Yes “loose” Veto Yes “loose” Veto
mT > 500 GeV Yes Yes Yes Yes
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Figure 2: Ratio of the number of events in the signal region to the number in the sideband
region, as a function of the Z′ mass, for simulated background QCD multijet events. The left
(right) plot involves events with no (at least one) b-tagged subjet. The solid line shows a fit of
a second-order polynomial function to the ratio.

The ratio is fit with a second-order polynomial function, which represents the correction factor
required to weight the events in the sideband region to reproduce the shape of the multijet



8 6 Systematic uncertainties

background in the signal region. This is the simplest functional form providing a satisfactory
fit. To avoid double counting when estimating the multijet background from data, the top
quark contribution in the sideband region, estimated from simulation, is subtracted. Good
agreement in shape between data and simulated events is observed in the sideband regions.

The normalization of the predicted multijet background cannot be reliably extracted from sim-
ulation and is fixed by a maximum likelihood fit to data in the signal region in a background-
only hypothesis. The contribution from tt is properly taken into account. A flat prior is used
for the nuisance parameter associated with the normalization of the multijet background. The
fit is performed on the mZ′ distribution and, as a consistency check, on the HT distribution, ob-
taining compatible results. It is verified that the scale factor obtained from the fit is not affected
by changing the signal hypotheses considered in this analysis. The inclusive normalization
factors are 0.093 ± 0.004 and 0.12 ± 0.01 for the 1 and 2 b tag event categories, respectively.
This normalization is used for plots in Section 7. For the extraction of upper cross section lim-
its on signal production, the normalization of the multijet background is determined by the
maximum likelihood fit to data described in Section 7.

The top quark background is estimated using simulated event samples normalized to the the-
oretical cross sections, as listed in Section 3. The systematic uncertainties that may impact the
event rates and the shapes of the mZ′ and mT distributions in simulated events are discussed
in Section 6. Table 3 shows the expected background yields for the two event categories, along
with the observed number of events in data. The uncertainties include both statistical and sys-
tematic components; the estimation of the latter is described in Section 6. The yields have been
normalized to give the observed total numbers of events.

Table 3: Number of events in the two signal categories of the analysis. The uncertainties include
both statistical and systematic components.

Sample SR 1 b tag SR 2 b tag

QCD multijet 1227+59
−59 222+22

−22

SM top quark 81+31
−23 66+23

−18

Total background 1308+67
−63 288+32

−29

Data 1307 289

6 Systematic uncertainties
Several sources of systematic uncertainty may impact the simulated signal and the top quark
backgrounds. The procedure used to estimate the multijet background is subject to uncertain-
ties as well. These systematic uncertainties affect both the shape and the normalization of the
mZ′ distribution used in the statistical procedure to infer the presence of signal. The systematic
uncertainties are treated as nuisance parameters in the likelihood fit used to extract the upper
cross section limit on signal production and are constrained by the data. Table 4 reports the
sources of systematic uncertainty, their impact on event rates, the type (rate only, or rate and
shape), and the processes for which they are relevant.

The energy scale of jets [52] is corrected with dedicated pT- and η-dependent factors derived
for AK4 and AK8 jets. The jet energy corrections for AK8 subjets are the same as for AK4 jets,
scaled for the difference in jet area. Systematic uncertainties are derived by varying the jet
energy scale within its uncertainty and thus obtaining the shape and normalization impact on
the distribution of mZ′ .
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Table 4: Sources of systematic uncertainty, their impact on event rates, their type, and the
processes for which they are relevant.

Systematic uncertainty Rate 1 b tag Rate 2 b tag Type Process
b-tagging efficiency 9–14% 12–17% rate + shape t bkg and signal
t-tagging efficiency 8–14% 8–14% rate + shape t bkg and signal
W-tagging efficiency 0.1–6% 0.1–6% rate + shape t bkg and signal
Jet energy scale 0.4–10% 0.1–8% rate + shape t bkg and signal
Jet energy resolution 0–2% 0–2% rate + shape t bkg and signal
Integrated luminosity 2.3% 2.3% rate t bkg and signal
Trigger efficiency 3% 3% rate t bkg and signal
PDFs 3–9% 3–8% rate + shape t bkg and signal
Pileup reweighting 0–3% 0.1–2 % rate + shape t bkg and signal
µR, µF 3–44% 1–41% rate + shape t bkg and signal
Sideband corr. (fit unc.) 4% 9% rate + shape QCD multijet
Sideband corr. (fit form) 1% 2% rate + shape QCD multijet
Sideband norm. 50% 50% rate QCD multijet

The energy resolution of jets is lower in data than in simulation, and thus a smearing factor is
applied to the four-vectors of AK4 jets, AK8 jets, and to the subjets, in simulated events. The
smearing factor for subjets is the same as that for AK4 jets. The impact of this uncertainty,
calculated by varying the smearing factor within its uncertainty, is negligible compared to that
of the other uncertainties.

The discrepancy of the t tagging efficiency between data and simulation is corrected with scale
factors derived in a semileptonic tt topology using a “tag-and-probe” technique [62, 63]. This
procedure selects a pure sample of tt events using a tight selection on the leptonically decaying
top quark. The sample is then used to measure the efficiency of the t tagging algorithm on the
hadronically decaying top quark. The scale factors are derived as a function of the jet pT, along
with their respective uncertainties. A similar procedure is used to derive the correction factors
for the W tagging algorithm. Jet and subjet b tagging efficiency correction factors for heavy-
and light-flavour jets [60] are varied within their uncertainties to derive the impact on shape
and normalization in simulated samples.

Different choices of the renormalization (µR) and factorization (µF) scales used to produce the
simulated samples induce shape and normalization changes in the Z′ boson mass distribution.
The impact is assessed by using dedicated simulated top quark and signal events where the µR
and µF are both scaled up or down by a factor of 2.

The pileup reweighting uncertainty is evaluated by varying the effective inelastic cross section
by 5%. To account for trigger efficiency discrepancies in data and simulation, a 3% rate uncer-
tainty is assigned to the simulated signal and top quark event yields. The uncertainty in the
measurement of the integrated luminosity is calculated to be 2.3% [64].

The systematic uncertainty related to the choice of the PDF values is assessed by varying the
eigenvectors for the NNPDF 3.0 set used in the simulation. The variations are summed in
quadrature to obtain the shape and rate variation due to PDF effects.

The systematic uncertainty in the estimation of the multijet background arises from the side-
band shape correction function (weight function) as explained in Section 5. When fitting the
ratio between the sideband and the signal region, the statistical uncertainties of the simulated
samples in the procedure are considered. In addition, a linear functional form for the weight
function is tested for comparison, and the observed difference is taken into account as a sys-
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tematic uncertainty. These uncertainties are propagated through the background estimation
procedure to obtain their impact on the shape and normalization of the mZ′ distribution. The
normalization of the multijet background is determined during the limit setting procedure by
allowing it to vary within an uncertainty of 50% in the maximum likelihood fit to data.

The most significant uncertainties are the ones associated with the multijet background fit
function, and with the choice of renormalization and factorization scales. Assigning a 50%
uncertainty to the multijet background normalization does not significantly affect the results
obtained in Section 7.

7 Results
The mZ′ distributions in the two signal categories are shown in Fig. 3. The mT and HT variables
are shown in Fig. 4. No excess with respect to the expected background is observed.

A template-based shape analysis with the THETA software package [65] is performed, using
the mZ′ distribution in the two categories, to extract upper cross section limits on a hypothetical
signal production. A Bayesian likelihood-based method [27] is used. Expected limit intervals at
95% confidence level (CL) are obtained by performing a large number of pseudo-experiments.
The expected background model is varied within the systematic and statistical uncertainties
to determine the best fit to the observed data. The modeling of uncertainties in the shapes is
performed through cubic-linear template morphing, where the cubic interpolation is used up
to one standard deviation and the linear interpolation beyond that [65]. A nuisance parameter
is assigned for each systematic uncertainty in the likelihood. For the parameter of interest,
i.e. the signal cross section, a uniform prior is used, while log-normal priors are used for the
nuisance parameters. The two event categories are fitted simultaneously.

To avoid the normalization of the multijet background being affected by the presence of a hy-
pothetical signal, a prior uncertainty of 50% is assigned in the fit of the signal hypothesis, as
discussed in Section 5. The fit is able to constrain the multijet normalization, primarily with the
1 b tag category, which has more events and is less signal enriched.

Table 5 shows the expected and observed limits on the cross section to produce a Z′ boson that
decays to Tt for different Z′ boson and T quark mass hypotheses. Three different hypotheses for
the decay of the T quark are considered: 100% branching fraction into bW, tH, or tZ. The effect
of increasing the width of the Z′ boson or the T quark to 10% on a single signal configuration
has been studied and the impact on the cross section limits is found to be negligible in both
cases, because of the detector resolution being bigger than 15%.

Figures 5 and 6 show the expected and observed upper cross section limits, respectively, for
Z′ → Tt for different hypotheses of the Z′ boson and T quark masses, and the branching fraction
of the T quark into bW and tH channels, with B(T→ tZ) = (1− B(T → bW, tH)). Observed
cross section limits are in all cases within 2 standard deviations of the expected values.

One-dimensional cross section limits compared to the expectation of the composite Higgs bo-
son model [24], as a function of the resonance mass for mT = 1.2 TeV and T branching fraction
to tH/tZ channels of 50/50%, are shown in Fig. 7 (left). A comparison of the limits to the
warped-extra dimension model [22] for T branching fractions to the bW/tH/tZ channels of
50/25/25% is shown on the right-hand side of the same figure. For some values of the mass
of the heavy resonance, the resonance width is predicted to be larger than 10% in the bench-
mark theoretical models. In these cases the simulated samples do not reproduce the behaviour
of the theory benchmarks accurately, hence the cross section values are not considered for the
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Figure 3: Distribution of the mZ′ variable for the signal region with 1 b tag (upper plot) and
2 b tags (lower plot) prior to the fit. The yellow (lighter) distribution represents the multi-
jet background estimated from data, the blue (darker) distribution is the estimated top quark
background, and the black markers are the data. The gray bands represent the statistical and
systematic uncertainties in the background estimates. The uncertainty σ includes the statistical
uncertainties in data and backgrounds, and the systematic uncertainties in the estimated back-
grounds. The dashed lines represent the distributions for signal hypotheses as indicated in the
legend. The signal distributions are each normalized to a cross section of 1 pb. Events lying
outside the x-axis range are not considered.
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Figure 4: Distributions of the mT (upper plots) and HT (lower plots) variables for the 1 b tag
(left) and 2 b tag (right) event categories prior to the fit. The gray bands represent the sta-
tistical and systematic uncertainties in the background estimates. The uncertainty σ includes
the statistical uncertainties in data and backgrounds, and the systematic uncertainties in the
estimated backgrounds. The dashed lines represent the distributions for signal hypotheses as
indicated in the legend. The signal distributions are each normalized to a cross section of 1 pb.
Events lying outside the x-axis range are not considered.



13

Table 5: Table of expected and observed limits on the cross section to produce a Z′ boson that
decays to Tt at 95% CL for the T → bW (upper), T → tH (middle), and T → tZ (lower) signal
hypotheses.

B(T→ bW) = 1
mZ′ [GeV] mT [GeV] Observed [pb] Expected [pb]

−2σ −1σ Median +1σ +2σ

1500 700 0.73 0.32 0.48 0.67 1.0 1.6
1500 900 1.5 0.64 0.94 1.5 2.2 3.7
1500 1200 8.6 3.7 5.2 7.8 13 22
2000 900 0.19 0.17 0.24 0.36 0.56 0.90
2000 1200 0.27 0.24 0.33 0.49 0.76 1.3
2000 1500 0.96 0.82 1.2 1.9 3.0 5.4
2500 1200 0.29 0.10 0.15 0.24 0.39 0.64
2500 1500 0.30 0.11 0.16 0.24 0.39 0.65

B(T→ tH) = 1
mZ′ [GeV] mT [GeV] Observed [pb] Expected [pb]

−2σ −1σ Median +1σ +2σ

1500 700 4.0 0.98 1.4 2.1 3.3 5.8
1500 900 3.2 0.76 1.0 1.6 2.6 4.2
1500 1200 9.4 2.6 3.6 5.6 9.3 19
2000 900 0.53 0.39 0.55 0.84 1.4 2.3
2000 1200 0.53 0.36 0.52 0.79 1.2 2.2
2000 1500 0.60 0.50 0.67 0.99 1.6 2.9
2500 1200 0.24 0.24 0.34 0.52 0.83 1.5
2500 1500 0.23 0.21 0.31 0.49 0.81 1.3

B(T→ tZ) = 1
mZ′ [GeV] mT [GeV] Observed [pb] Expected [pb]

−2σ −1σ Median +1σ +2σ

1500 700 3.1 0.84 1.2 1.8 2.9 4.7
1500 900 2.8 0.77 1.1 1.6 2.5 4.3
1500 1200 3.4 1.3 1.8 2.7 4.2 6.4
2000 900 0.37 0.30 0.41 0.61 0.97 1.8
2000 1200 0.30 0.23 0.34 0.50 0.80 1.3
2000 1500 0.32 0.26 0.37 0.55 0.85 1.7
2500 1200 0.16 0.14 0.21 0.31 0.52 0.92
2500 1500 0.13 0.12 0.17 0.27 0.45 0.77
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Figure 5: Expected cross section limits for Z′ → Tt for different hypotheses for the Z′ boson
and T quark masses, and the branching fraction of the T quark decay into bW and tH channels,
with B(T→ tZ) = (1−B(T→ bW, tH)).
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Figure 6: Observed cross section limits for Z′ → Tt for different hypotheses for the Z′ boson
and T quark masses, and the branching fraction of the T quark decay into bW and tH channels,
with B(T→ tZ) = (1−B(T→ bW, tH)).
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comparison and are marked by a dashed line in Fig. 7. The increase of the total width of the
resonance with the increase of its mass is caused by additional decay channels becoming kine-
matically allowed. The change in slope of the theoretical cross sections around mZ′ = 1.6 and
2.4 TeV is due to the Tt and TT decay channels respectively becoming kinematically allowed.
The comparison with the expectations of theoretical models shows that this search has no sen-
sitivity to the composite Higgs model [24] and some sensitivity to the extra dimensions model
[22], however more data is needed to exclude specific scenarios.
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Figure 7: One-dimensional cross section limits at 95% CL as a function of the heavy vector
resonance mass for mT = 1.2 TeV, assuming branching fractions of the T quark decay to the
tH/tZ channels of 50/50% (left) or to the bW/tH/tZ channels of 50/25/25% (right). The solid
line is the observed limit, the dotted line is the expected limit, shown with 68% (inner) and
95% (outer) uncertainty bands. In the left plot, the green thick line is the product of the cross
section and branching fraction for a heavy spin-1 resonance ρ0

L → Tt in a composite Higgs
boson model [24]. In the right plot, the blue thick line is the product of the cross section and
branching fraction for a heavy gluon G∗ → Tt in a warped extra-dimension model [22]. The
theoretical predictions are shown as dashed lines where the width of the resonance is larger
than 10% of its mass.

8 Summary
A search for a massive spin-1 resonance decaying to a top quark and a vector-like T quark
has been performed in the all-jets channel using

√
s = 13 TeV proton-proton collision data

collected by CMS at the LHC. The search uses jet-substructure techniques, involving top quark
and W boson tagging algorithms, along with subjet b tagging. The top quark and W boson
algorithms are based on the N-subjettiness variables and use the modified mass-drop algorithm
to compute the jet mass. The multijet background is estimated in data through a sideband
region that is adjusted through simulation-based correction factors. The top quark background
is estimated using simulated events.

No excess is observed in data beyond the standard model expectations, and upper limits are
set on the production cross sections of hypothetical signals. The cross section limits are com-
pared to the cross sections of a spin-1 resonance in a composite Higgs boson model and a
Kaluza-Klein gluon in a warped extra-dimension model, for benchmark values of the model
parameters, assuming a T quark mass of 1.2 TeV. Branching fractions of the T quark decay to
the tH/tZ channels of 50/50% and to the bW/tH/tZ channels of 50/25/25% are assumed for
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models with a composite Higgs boson and with a warped extra-dimension, respectively. This
search is not sensitive to the composite Higgs model [24] with the analyzed data. In the case of
the model with a warped extra-dimension [22], the upper limit obtained on the cross section is
just at the predicted level for G∗ masses in the region of 1.8 TeV. Although limits are not placed
on these particular models, more generally a Z′ boson decaying to a top and a T quark is ex-
cluded at 95% confidence level, with upper limits on production cross sections ranging from
0.13 to 10 pb, depending on the hypotheses. This is the first search for a heavy spin-1 resonance
decaying to a vector-like T quark and a top quark.
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J.D. Ruiz Alvarez8, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis,
H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger9, M. Finger Jr.9

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
A. Ellithi Kamel10, M.A. Mahmoud11,12, A. Radi12,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen



25

Helsinki Institute of Physics, Helsinki, Finland
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V. Calvellia ,b, F. Ferroa, M.R. Mongea,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
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L. Baronea,b, F. Cavallaria, M. Cipriania,b, D. Del Rea ,b ,16, M. Diemoza, S. Gellia ,b, E. Longoa,b,
F. Margarolia,b, B. Marzocchia ,b, P. Meridiania, G. Organtinia,b, R. Paramattia ,b, F. Preiatoa,b,
S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b
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Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University - Physics Department, Science and Art Faculty
A. Adiguzel, S. Cerci52, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis,
G. Gokbulut, Y. Guler, I. Hos53, E.E. Kangal54, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut55,
K. Ozdemir56, D. Sunar Cerci52, B. Tali52, H. Topakli57, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak58, G. Karapinar59, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya60, O. Kaya61, E.A. Yetkin62, T. Yetkin63

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen64

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov,
Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher,
J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold65,
S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev66, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill,
J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous,
A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron,
D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne,
A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas65,
L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko50, J. Pela, B. Penning,



33

M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper,
K. Uchida, M. Vazquez Acosta67, T. Virdee16, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

Catholic University of America
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok,
E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif

University of California, Davis, Davis, USA
R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway,
R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean,
M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos,
M. Tripathi

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll,
D. Saltzberg, C. Schnaible, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman,
P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas,
W. Si, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein,
V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon,
M. Tadel, A. Vartak, S. Wasserbaech68, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della
Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco
Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin,
A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J. Duarte, J.M. Lawhorn, A. Mott,
H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg



34 A The CMS Collaboration

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland,
K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman,
J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker,
P. Wittich, M. Zientek

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas,
J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana,
S. Cihangir†, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green,
S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu,
B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre,
D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini,
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M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, T. Perry,
G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods



37

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
China
3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg,
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